Application Note March 17, 2009 AN1458.0 ### ISL7457SRH TID Rating The ISL7457SRH is specified for 10krads(Si) minimum TID in SMD 5962-08230 when continuously biased as shown in Figure 1. In many cases a 10krad(Si) TID rating is not adequate to meet mission requirements, so a method to extend the TID capability is desired. Figure 2 shows a radiation exposure circuit that biases the ISL7457SRH only 20% of the time. For the other 80% of the time, the ISL7457SRH is unbiased. Devices irradiated in this manner have demonstrated acceptable post-rad parametric limits after 50krad(Si) TID, as indicated in the Electrical Specification tables of this application note. Please note, however, that the post-50krad electrical specifications shown herein are not specified in or guaranteed by SMD 5962-08230. ### **Imaging Applications** Some camera CCD driver applications do not require 100% availability. In these situations, the ISL7457SRH can be left unbiased until there is a need to image. When imaging is required, the ISL7457SRH can be quickly biased by simply closing a switch. As long as the duty-cycle of the application does not exceed 20%, the TID capability can be extended up to 50krad(Si). #### **Conclusions** A simple method to extend the TID capability of the ISL7457SRH to 50krad(Si) has been described. This method can be applied to any space-based system that uses the device as long as 20% availability is acceptable. FIGURE 1. RAD EXPOSURE CIRCUIT (BIAS DUTY CYCLE = 100%) FIGURE 2. RAD EXPOSURE CIRCUIT (BIAS DUTY CYCLE = 20%) # **Application Note 1458** $\begin{tabular}{ll} \textbf{Electrical Specifications} & V_S+=V_H=5V\ \pm 10\%,\ V_{S^-}=V_L=0V,\ OE=V_S+,\ T_A=\pm 25^\circ C,\ Post\ 50krad(Si)\ unless\ otherwise\ specified.\ Refer to\ Figure\ 2\ for\ radiation\ exposure\ circuit\ biasing. \end{tabular}$ | PARAMETER | DESCRIPTION | CONDITION | MIN | TYP | MAX | UNIT | |----------------------|---|--|------|-----|-----|------| | INPUT | <u>'</u> | | Į. | U. | U. | 1 | | V _{IH} | Logic "1" Input Voltage | | 2 | | | V | | I _{IH} | Logic "1" Input Current | $INx = V_S +$ | -10 | | 10 | μA | | V _{IL} | Logic "0" Input Voltage | | | | 0.6 | V | | I _{IL} | Logic "0" Input Current | INx = 0V | -10 | | 10 | μA | | OUTPUT | | | 1 | • | | | | R _{OH} | ON Resistance V _H to OUTx | INx = V _S +, I _{OUTx} = -100mA | | | 12 | Ω | | R _{OL} | ON Resistance V _L to OUTx | INx = 0V, I _{OUTx} = +100mA | | | 7 | Ω | | I _{LEAK+} | Positive Output Leakage Current | $INx = V_S+$, $OE = 0V$, $OUTx = V_S+$ | | | 300 | μΑ | | I _{LEAK} - | Negative Output Leakage Current | $INx = V_S+$, $OE = 0V$, $OUTx = V_S-$ | -50 | | | μΑ | | POWER SUPPL | .Y | , | | | | | | I _{S+} | V _S + Supply Current | INx = 0V and V _S + | | | 5 | mA | | I _S - | V _S - Supply Current | INx = 0V and V _S + | -5 | | | mA | | I _H | V _H Supply Current | INx = 0V and V _S + | | | 650 | μΑ | | IL | V _L Supply Current | INx = 0V and V _S + | -650 | | | μΑ | | SWITCHING CH | HARACTERISTICS | , | J. | | | | | t _R | Rise Time | INx = 0V to 4.5V step, C _L = 1nF | | | 40 | ns | | t _F | Fall Time | $INx = 4.5V \text{ to } 0V \text{ step, } C_L = 1nF$ | | | 26 | ns | | $t_{RF\Delta}$ | t _R , t _F Mismatch | C _L = 1nF | | | 5 | ns | | t _D + | Turn-On Delay Time | INx = 0V to 4.5V step, C _L = 1nF | | | 30 | ns | | t _D - | Turn-Off Delay Time | $INx = 4.5V \text{ to } 0V \text{ step, } C_L = 1nF$ | | | 40 | ns | | t _{DD} | t _D +, t _D - Mismatch | C _L = 1nF | | | 12 | ns | | t _{ENABLE} | Enable Delay Time | INx = V _S +, OE = 0V to 4.5V step, $R_L = 1k\Omega$ | | | 35 | ns | | ^t DISABLE | Disable Delay Time | INX = V_S +, OE = 4.5V to 0V step, R_L = 1k Ω | | | 50 | ns | ## **Application Note 1458** ### **Electrical Specifications** V_S + = V_H = 15V ±10%, V_S - = V_L = 0V, OE = V_S +, T_A = +25°C, Post 50krad(Si) unless otherwise specified. Refer to Figure 2 for radiation exposure circuit biasing. | PARAMETER | DESCRIPTION | CONDITION | MIN | TYP | MAX | UNIT | |----------------------|---|--|------|-----|-----|------| | INPUT | | · | | | | | | V _{IH} | Logic "1" Input Voltage | | 2 | | | V | | I _{IH} | Logic "1" Input Current | $INx = V_S +$ | -10 | | 10 | μΑ | | V _{IL} | Logic "0" Input Voltage | | | | 0.6 | V | | I _{IL} | Logic "0" Input Current | INx = 0V | -10 | | 10 | μA | | OUTPUT | | | | | | | | R _{OH} | ON Resistance V _H to OUTx | $INx = V_S+$, $I_{OUTx} = -100mA$ | | | 5 | Ω | | R _{OL} | ON Resistance V _L to OUTx | INx = 0V, I _{OUTx} = +100mA | | | 5 | Ω | | I _{LEAK+} | Positive Output Leakage Current | $INx = V_S+$, $OE = 0V$, $OUTx = V_S+$ | | | 300 | μA | | I _{LEAK} - | Negative Output Leakage Current | $INx = V_S+$, $OE = 0V$, $OUTx = V_S-$ | -50 | | | μΑ | | POWER SUPPL | Y | · | | | | , | | I _{S+} | V _S + Supply Current | INx = 0V and V _S + | | | 5 | mA | | I _S - | V _S - Supply Current | INx = 0V and V _S + | -5 | | | mA | | I _H | V _H Supply Current | INx = 0V and V _S + | | | 750 | μA | | IL | V _L Supply Current | INx = 0V and V _S + | -750 | | | μA | | SWITCHING CH | IARACTERISTICS | • | | • | | | | t _R | Rise Time | INx = 0V to 5V step, C _L = 1nF | | | 20 | ns | | t _F | Fall Time | INx = 5V to 0V step, C _L = 1nF | | | 20 | ns | | $t_{RF\Delta}$ | t _R , t _F Mismatch | C _L = 1nF | | | 3 | ns | | t _D + | Turn-On Delay Time | INx = 0V to 5V step, C _L = 1nF | | | 20 | ns | | t _D - | Turn-Off Delay Time | INx = 5V to 0V step, C _L = 1nF | | | 20 | ns | | t _{DD} | t _D +, t _D - Mismatch | C _L = 1nF | | | 5 | ns | | t _{ENABLE} | Enable Delay Time | INx = V_S +, OE = 0V to 5V step, R_L = 1k Ω | | | 25 | ns | | t _{DISABLE} | Disable Delay Time | INx = V_S +, OE = 5V to 0V step, R_L = $1k\Omega$ | | | 65 | ns | Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding.